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ABSTRACT 
There has been considerable interest in techniques for modelling 
student learning across practice problems to drive real-time 
adaptive learning, with particular focus on variants of the classic 
Bayesian Knowledge Tracing (BKT) model proposed by Corbett 
& Anderson, 1995. Over time researches have proposed many 
variants of BKT with differentiation based on their treatment of 
the underlying parameters: (a) general across student and 
questions; (b) individualized for students; and (c) individualized 
for questions. Yet at the same time, most of these variants are 
similar in that they utilize the same Hidden Markov (HMM) 
architecture to model student learning and share many of the same 
drawbacks, including less effective balancing between recent and 
historical student data and assuming that students learn at the 
same rate across all the attempts irrespective of if they get the 
question right. At the same time, these variants share the virtue of 
parameter interpretability, a virtue not seen in recent efforts to re-
cast knowledge tracing as a deep learning problem. 

This paper proposes a different architecture that replaces learning 
rate with recency weights which capture student improvement 
wholly through data rather than assuming constant learning across 
attempts and manages recent and historical data more 
appropriately while retaining the interpretability of BKT 
parameters. The proposed model was tested on multiple public 
datasets from ASSISTments and Mindspark and performed 
similarly to classic BKT model on unseen data.   
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1. INTRODUCTION 
One of the most common forms of adaptivity in intelligent 
tutoring systems is mastery learning, where a system provides 
content on a skill until a student demonstrates they know the skill 
[8]. Most intelligent tutoring systems rely on “Knowledge 
Tracing” models which predict whether a student has learned a 
skill or not based on the interactions with the learning resources 
related to that skill within the tutoring system. Currently, most 
systems used at scale rely on Corbett and Anderson’s (1995) 

Bayesian Knowledge Tracing (BKT) model or a close variant of 
it. Most of these models differ in their treatment of the parameters 
L0, G, S and T, but leave the basic structure of the underlying 
HMM model unchanged, and thus share many of the limitations 
and drawbacks of the BKT model (e.g. [7, 10, 9, 10]). Recently 
there have been some attempts to use deep learning-based models 
in education, termed Deep Knowledge Tracing (DKT) [6, 5]. 
Though DKT models have performance advantages over BKT, it 
is extremely difficult to interpret the implicit knowledge model. 
Khajah and colleagues [6] found that it is possible to make 
meaningful enhancements to BKT that bring its performance to 
the same level as DKT models. 

In this paper, we propose an algorithm, MS-BKT (Multistate 
BKT) to address two particular shortcomings of the classic BKT 
model. First, BKT assumes a constant learning rate after each 
practice opportunity, irrespective of the student responses. which 
can lead to bias in estimating student mastery level. Second, BKT 
represents latent student knowledge as a binary variable with 
known and unknown states, which is a simplification and assumes 
that the probability of being in a state at step n depends only on 
the previous step n-1. We suspect that these assumptions limit the 
BKT model from considering the entire history of responses for 
students in a balanced manner by giving unproportionately high 
weight to the most recent attempt. The MS-BKT addresses these 
issues through two modifications: 

 The MS-BKT model gives more weight to recent 
responses over older ones during the iterative Bayesian 
update in order to capture changes in student mastery 
level from data and excludes learning rate T so there is 
no assumption of fixed learning after each attempt. 
Please note that this paper uses ‘Recency’ weights 
differently than previous papers such as Galyardt & 
Goldin [3] or Gong et al., [4], where they used a decay 
function to down-weight the older attempts. In 
comparison, this paper incrementally increases the 
weight of the newer attempts. 

 MS-BKT expands the knowledge node from the typical 
2 states (‘Not learned’, ‘Learned’) to 21 states. Adding 
multiple states to the knowledge node allows MS-BKT 
to better capture complex sequences of correct and 
incorrect responses as multiple states make it possible to 
fine tune the knowledge level more granularly after each 
new observation than the 2 state model. Given that real 
world data can be very noisy, MS-BKT model estimates 
lead to smoother learning curves than classic BKT 
models. 

 

 



2. APPROACH 
2.1 Classic BKT Model Architecture 
Classic BKT employs a Hidden Markov Model (HMM) with a 
two-state (‘Not learned’, ‘Learned’) latent node representing 
student mastery level of the skill and a binary observed node 
indicating whether the student solved the question correctly or 
incorrectly as shown in Figure 1. The model assumes that the 
student can make the transition from not knowing the skill to 
knowing after every practice opportunity, fit as the learning 
probability p(T). The model also incorporates the probability that 
the student may answer a question incorrectly despite knowing the 
skill (called slip) or may get the answer correct despite not 
knowing the skill (called guess). 

The probability that the student knows the skill gets updated after 
every practice opportunity through the following equations – 

 
2.2 Multistate BKT Model Architecture 
The architecture for MS-BKT, shown in Figure 2, is similar to 
that of classic BKT with two changes: 

 The “knowledge node” consists of 21 states instead of 2 
(Knowledge states are denoted by Lin where i is in range 

0 to 20 and Σi p(Lin) = 1). 21 discrete states were 
selected as it was granular enough to give a precise 
estimate with manageable calculation overhead. The 
choice of number of states can be explored further in 
future work, including the possibility of a continuous 
distribution function. 

 A recency weight parameter R is introduced in place of 
the transition probability p(T). The model assigns a 
default weight of 1 to the first attempt and thereafter 
weight increases incrementally by a fixed quantum R 
for each new attempt. The optimal value of R can be 
learnt from data. Recent attempts are incrementally 
weighted more based on the intuition that the recent 
data will reflect current learning level better but at the 
same time, older attempts cannot be ignored completely 
as data can be inherently noisy. 

This effectively means that MS-BKT is the same as classic BKT 
in that new data is integrated with a past estimate aggregating all 
past data, but differs in that the past estimate is now a distribution 
and that the weight of the new data increases over time. 

 
Figure 1. Classic BKT model

 
Figure 2. MS-BKT model architecture. 



 

2.3 Updating Student Knowledge 
Given an observation of the student’s response at time opportunity 
n (correct or incorrect), updated student knowledge (Ln) is 
calculated using Bayes’ rule. Since Ln now consist of 21 states, 
the probability of each state needs to be updated after every new 
observation as follows: 

Where: 
 p(Lin | Cn ) represents the probability of the ith knowledge 

state given the observation Cn 
 p(Cn | Lin-1) is the likelihood factor. p(Cn | Lin-1) = Lin-1 * 

(1- p(S)) + (1- Lin-1)*p(G) 
 p(Lin-1) is the prior probability of the ith knowledge state 
 1 + (n-1)*R is the weight for the nth response, where n is 

the number of actions so far and R is a free parameter 
estimated during model fitting 

  is the normalizing factor which is computed at each 
iteration to be the value that ensures that probabilities 
across all the 21 states sum to 1 
 

Once new probabilities are calculated, Ln value is estimated using 
maximum a posteriori probability (MAP) estimate that equals the 
mode of the posterior distribution. The advantage of using a MAP 
estimate over an EAP estimate is that it provides sharper updates 

even at the initial responses stage. The overall model parameters 
are learned from data using ‘Expectation Maximization’. 

3. RECENCY WEIGHTS SUCCESSFULLY 
CAPTURES REAL TIME LEARNING 
FROM DATA 
In this section we use a hypothetical example to show that the 
MS-BKT model is capable of capturing learning and forgetting 
from data itself by the property of recency weights and does not 
need an external fixed amount of learning to be added after each 
attempt, unlike classic BKT. This example tracks how the mastery 
level of three fictitious students changes as they attempt 10 
questions on a skill for MS-BKT model. Parameter values used 
for the below illustration are as follows: L0: 0.5; G: 0.1; S: 0.1; 
and T: 0.3. 
All three students answer five questions out of 10 correctly, but 
their patterns are different. Student1 answers questions correctly 
and incorrectly consecutively. Student2 answers more questions 
correctly in later attempts, whereas for Student3 the situation is 
reversed, suggesting that Student2 displays a learning behavior 
whereas Student3 displays forgetting. 
As the following table shows, the mastery level estimate from 
MS-BKT for Student2 (pattern with learning) is considerably 
higher than for Student3 (pattern with forgetting), though both 
students answer 5 out of 10 questions correctly. The mastery 
estimate of Student1, which was added as a base case, is close to 
0.5 as expected. 

 
Table 1. Response patterns used for generating posterior distribution curves 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
Mastery 
Estimate 

Student1 0 1 0 1 0 1 0 1 0 1 0.55 
Student2 0 0 0 0 1 0 1 1 1 1 0.67 
Student3 1 1 1 0 1 0 0 1 0 0 0.37 

 

4. OTHER OBSERVATIONS 
In the BKT model, Ln values get updated very aggressively after 
each observation and result in large fluctuations in the value of Ln 
(though, with reasonable parameter values, BKT still has lower 
fluctuation than has been reported for DKT, e.g. Yeung & Yeung, 
2018). In comparison to classic BKT model, the MS-BKT model 
does not fluctuate that widely for the same set of skill parameters. 
MS-BKT model also takes in account the entire history of the 
student’s responses in a more balanced manner whereas in BKT, a 
student’s response history prior to the third or fourth attempt may 
become irrelevant due to aggressive updates. 
Table 2 and Figure 3 illustrate the above two points using 
fictitious student data. The underlying BKT and MS-BKT models 
use the same parameter values for L0, G, and S; L0: 0.5, G: 0.1, 
and S: 0.1. T value for BKT model is 0.1 and R value for MS-
BKT is 0.3. The comparison of Ln values for Student4, Student5, 
and Student6 show that Ln values have significantly higher 
fluctuations for BKT model in comparison to MS-BKT model. 
Also, in the cases of Student4 and Student7, Ln estimates are 

extremely high for the BKT model and does not correspond to the 
respective response patterns. For Student4, Ln shoots up 
drastically to 0.75, even though there is a long history of incorrect 
responses on previous attempts and learning rate is only 0.1. By 
comparison, the Ln value is around 0.30 for the MS-BKT model. 
For Student7, Ln value is 0.83 in the case of the BKT model even 
though 3 out of last 4 responses were incorrect. This is largely due 
to the fact that the BKT model considers fixed learning rate 
irrespective of the student responses. The same Ln value for the 
MS-BKT model is 0.45, as the model is able to derive learning or 
forgetting directly from the data. Comparison of the response 
patterns of Student5 and Student6 shows some trade-offs between 
models. MS-BKT model estimates the Ln value to be 0.55 for 
Student6 in comparison to 0.90 estimated by the classic BKT 
model – probably a better fit, since the student has alternated 
between answering the questions correctly and incorrectly. By 
contrast, for student5 MS-BKT estimates Ln value to be 0.70 
giving the student more credit as for recent responses being 
correct – perhaps a little too low compared to BKT. Of course, all 
of these estimates can be adjusted by tuning the parameters during 
model development. 



 
Table 2. Response patterns used for comparing the two models 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Average BKT MS-BKT 
Student4 0 0 0 0 0 1 0 1 0.25 0.75 0.30 
Student5 0 0 0 0 1 1 1 1 0.50 1.00 0.70 

Student6 0 1 0 1 0 1 0 1 0.50 0.90 0.55 

Student7 0 1 1 1 0 1 0 0 0.50 0.83 0.45 

 
  

  
 

 

 

 
Figure 3. Comparison of Ln estimate for BKT and MS-BKT. 

 
 
 

Table 3. L0, G, S, T values for BKT and MS-BKT models 

   BKT    MS-BKT    
Dataset #Student #Attempts L0 G S T L0 G S T 
G6_207 620 6 0.42 0.28 0.15 0.08 0.56 0.27 0.29 0.25 

G7_233 540 7 0.73 0.26 0.22 0.01 0.65 0.09 0.25 0.25 

G6_217 500 5 0.61 0.30 0.13 0.10 0.60 0.29 0.21 0.25 
PER015 855 5 0.50 0.11 0.30 0.15 0.58 0.15 0.29 0.25 
WNO021_57 536 6 0.80 0.24 0.18 0.11 0.66 0.27 0.19 0.50 
WNO021_48 536 6 0.78 0.30 0.08 0.30 0.74 0.29 0.09 0.25 

 



 
 

Table 4. Comparison of BKT and MS-BKT models 

   BKT  MS-BKT  
Dataset #Students #Attempts AUC ROC RMSE AUC ROC RMSE 
G6_207 156 6 0.707 0.457 0.712 0.460 

G7_233 138 7 0.663 0.464 0.640 0.468 

G6_217 126 5 0.664 0.442 0.650 0.446 
PER015 171 5 0.659 0.480 0.652 0.483 
WNO021_57 134 6 0.618 0.421 0.639 0.425 
WNO021_48 134 6 0.702 0.337 0.664 0.345 

 

5. PREDICTION QUALITY 
We used 6 datasets across 2 different ITS (Assistments - G6_207, 
G7_233, G6_217; Mindspark - PER015, WNO021_57, 
WNO021_48) to compare the performance of the MS-BKT model 
against classic BKT model. Mindspark is an adaptive online tutor 
for Math and English, developed by Educational Initiatives (EI). 
Mindspark Math currently has 80,000 users across India, 
primarily from private schools, in grades 1 to 9. ASSISTments is 
an online tutor that supports student learning through the use of 
scaffolding, hints, and immediate feedback. All the datasets 
consist of student responses in the form of correct or incorrect 
answers from specific problems tagged by skill. The performance 
was compared on a hold-out data set consisting of 20% of the 
data. Table 3 lists out the parameter values for the two models for 
all the datasets using training data. The parameters for each model 
were tuned using the simple Brute Force approach. Table 4 
compares the performance of both the models on hold-out dataset. 
Results show that the classic BKT model performs better than 
MS-BKT model on most of the datasets (except G6_207 and 
WNO021_57) but the differences are not very large. 

6. CONCLUSION 
This paper highlights two issues related to the classic BKT model 
and tries to address them by proposing a new model (MS-BKT). 
The paper demonstrates that applying a recency adjustment to 
Bayesian updates can lead to better properties of knowledge 
estimation, compared to using a static learning rate. The paper 
also proposes considering latent student knowledge as a multistate 
variable instead of 2 states, leading to smoother updates in the 
learning level estimate. In summary, the MS-BKT model displays 
some useful properties that are worth considering. Ultimately, 
models should both capture data well and have desirable 
properties for actual use, whether for use in a running system or 
discovery with models analysis. There is considerable future work 
to be done in refining the MS-BKT model further – such as 
selection of the appropriate number of knowledge states, 
implementation of recency weights, and effective ways to tune the 
model parameters. 

7. REFERENCES 
[1] Baker, R.S., Gowda, S.M., & Salamin, E. 2018. Modeling 

the learning that takes place between online 

assessments. Proceedings of the 26th International 
Conference on Computers in Education, 21-28. 

[2] Falakmasir, M. H., Yudelson, M., Ritter, S., & Koedinger, K. 
2015. Spectral Bayesian knowledge tracing. Proceedings of 
the 8th International Conference on Educational Data 
Mining, Madrid, Spain, 360-364. 

[3] Galyardt, A., & Goldin, I. 2015. Move your lamp post: 
Recent data reflects learner knowledge better than older data. 
Journal of Educational Data Mining. 7, 2, 83–108. 

[4] Gong, Y., Beck, J. E., & Heffernan, N. T. 2011. How to 
construct more accurate student models: Comparing and 
optimizing knowledge tracing and performance factor 
analysis. International Journal of Artificial Intelligence in 
Education. 21, 1, 27–46. 

[5] Jiang, B., Ye, Y., & Zhang, H. 2018. Knowledge tracing 
within single programming exercise using process data. 
Proceedings of the 26th International Conference on 
Computers in Education. 89-94. 

[6] Khajah, M., Lindsey, R. V., & Mozer, M. C. 2016. How deep 
is knowledge tracing? Proceedings of the 9th International 
Conference on Educational Data Mining. 94-101. 

[7] Pardos, Z. A., & Heffernan, N. T. 2011. KT-IDEM: 
Introducing Item Difficulty to the Knowledge Tracing 
Model. User Modeling Adaptation and Personalization 
Lecture Notes in Computer Science, 243-254. 

[8] Ritter, S., Yudelson, M., Fancsali, S. E., & Berman, S. R. 
(2016, April). How mastery learning works at scale. 
Proceedings of the Third ACM Conference on Learning @ 
Scale. 71-79. 

[9] Wang, Y., & Beck, J. 2013. Class vs. student in a Bayesian 
network student model. Artificial Intelligence in Education. 
AIED 2013. Lecture Notes in Computer Science, vol. 7926. 

[10] Yudelson, M.V., Koedinger, K.R., & Gordon, G.J. 2013. 
Individualized Bayesian knowledge tracing models. 
International Journal of Artificial Intelligence in Education. 
171–180.


